Introduction
The source-record-manager(SRM) converts MARC records to Inventory instances while handling incoming data. The process of converting MARC record into Instance object is usually called MARC-to-Instance mapping.	Comment by Lisa McColl: Add space	Comment by Lisa McColl: The process of converting a MARC record into an Instance object is usually called….
Conversion logic is defined by mapping rules and these rules are described in JSON. Mapping rule basically has functions for data normalization(trim leading whitespaces, remove slashes, remove ending punctuation) and the target Instance field, where to put result of mapping.	Comment by Lisa McColl: Maybe this:

“Mapping rules basically have functions for data normalization (trimming leading whitespaces, removing slashes, removing ending punctuation) and the assigning target Inventory fields to the values of the incoming MARC record.”
What is mapping rule	Comment by Lisa McColl: “What is a mapping rule”
Basically, rule is a simple key-value JSON element. The key serves a MARC record's field(tag). The value itself is a rule.	Comment by Lisa McColl: Bascially, a mapping rule is a simple key-value….	Comment by Lisa McColl: *Insert a space*

Rule:
{
 "001":[
 {
 "target":"hrid",
 "description":"The human readable ID"
 }
]
}
This rule belongs to the "001" field and handles all the "001" fields from incoming record. It takes value from "001" field and puts it into Instance "hrid" field. Such rules are usual for Control field.	Comment by Lisa McColl: I’m not sure what this means. In cataloging terms the 001 field is not a “Controlled Field”

Normalization functions
In most cases the record value needs to be normalized before getting into Instance field, because of record data is often raw and mixed . For this purpose we have to use such structure:	Comment by Lisa McColl: “being imported into an Instance field, because MARC record data is often raw and mixed.”

MARC Record: "001": "393/89/3"
Rule:
 "001":[
 {
 "target":"hrid",
 "description":"The human readable ID",
 "rules":[
 {
 "conditions":[
 {
 "type":"remove_substring",
 "parameter":{
 "substring":"/"
 }
 }
]
 }
]
 }
]
remove_substring is normalization function, that removes given substring from field's value. The function just doing a job and returns string that gets into Instance "hrid" field. An outcome Instance looks like this in Json:	Comment by Lisa McColl: Remove comma	Comment by Lisa McColl: that removes the given substring from the field’s value. The function is just doing a job and returns a string that ends up in the Instance “hrid” field.
Instance:
{
 "hrid": "393893"
}

Here all the formatting functions defined. Most useful are: trim, capitalize, remove_ending_punc.
In most cases there are sub-fields present in field, that is important for mapping. Example for "250" field with a, b, 6 sub-fields comes below:	Comment by Lisa McColl: In most cases there are subfields present within MARC fields. This is important for mapping. Here is an example of a MARC “250” field that contains a “subfield a”, a “subfield b”, and a “subfield 6.”

MARC Record: "250":{"ind1":"", "ind2":"", "subfields":[{ "a":" fifth ed." }, { "b":"Editor in chief Lord Mackay of Clashfern. " } , {"6":"880-02"}]}

Rule:
 "250":[
 {
 "target":"edition",
 "description":"Edition",
 "subfield":["a", "b"],
 "rules":[
 {
 "conditions":[
 {
 "type":"capitalize, trim"
 }
]
 }
]
 }
]

This rule takes only "a" and "b" sub-fields and calls normalization functions for each sub-field. The result is concatenated in one string and written to the Instance "edition" field. An outcome Instance looks like this in Json:	Comment by Lisa McColl: This rule takes only the “a” and “b” subfields (“subfield 6” is purposely left out) and calls normalization functions
Instance:
{

 "edition": "Fifth ed. Editor in chief Lord Mackay of Clashfern."
}

Mapping for complex fields
What if the target Instance field is not simple String, but List of complex objects with several fields in ? This happends usually if record field is a Data field. We can write rule to map record as below:	Comment by Lisa McColl: What if the target Instance field is not a simple string, but a list of complex objects with several fields in it? This happens usually if the MARC record field is a Data field. We can write rules to map this part of the record:	Comment by Lisa McColl: Note: I’m not sure what is meant here by a “Data Field.” It seems like this example is like the 250 one above, except that the FOLIO Instance record provides a different target for each subfield this time. If that’s the case maybe this sentence would clear it up:

What if there is a separate target in an Instance record for each subfield within a MARC field? If that is the case, then we can write the mapping rules as shown below:

MARC Record: "264":{"subfields":[{"a":"Chicago, Illinois :"}, {"b":"The HistoryMakers,"}, {"c":"[2016]"}], "ind1":" ", "ind2":"1"}

Rule:
"264": [
 {
 "target": "publication.place",
[bookmark: _GoBack] "description": "Place of publication",
 "subfield": ["a"],
 "rules": []
 },
 {
 "target": "publication.publisher",
 "description": "Publisher of publication",
 "subfield": ["b"],
 "rules": []
 },
 {
 "target": "publication.dateOfPublication",
 "description": "Date of publication",
 "subfield": ["c"],
 "rules": []
 }
]
An outcome Instance looks like this in Json:
Instance:
{
 "publication":[
 {
 "place":"Chicago, Illinois :",
 "publisher":"The HistoryMakers,",
 "dateOfPublication":"[2016]"
 }
]
}

If there are repeated "264" fields in a single record, then Instance gets several elements in the "publication" field. To skip mapping for repeated fields and take only first occurrence We can use ignoreSubsequentFields flag:	Comment by Lisa McColl: If there are repeated MARC fields in a single record, then the Instance will receive several elements in its target field. To skip mapping for repeated fields and take only the first occurrence, we can use the ignoreSubsequentFields flag:
MARC Record:
"336":{"subfields":[{"a":"text"}, {"b":"txt"}, {"2":"rdacontent"}], "ind1":" ", "ind2":" "}, ...
"336":{"subfields":[{"a":"performed music"}, {"b":"prm"}, {"2":"rdacontent"}], "ind1":" ", "ind2":" "}
Rule:
"336": [
 {
 "target": "instanceTypeId",
 "description": "Instance type ID",
 "ignoreSubsequentFields": true,
 "subfield": ["b"],
 "rules": []
 }
]
An outcome Instance looks like this in Json:
Instance:
{
 "instanceTypeId": "txt"
}

Multiple objects from one field
Usually, the Rule Processor creates only one instance of the 'target' field for each record field. What if We need to create several objects from single record field ?	Comment by Lisa McColl: we
New object for group of sub-fields
In example below we map several 'publication' elements from a single "264" record field. To do so, we have to wrap mapping structure into entity:

MARC Record:
 "264": {
 "subfields":[
 {"a":"Chicago, Illinois :"},
 {"b":"The HistoryMakers,"},
 {"c":"[2016]"},
 {"f":"Nashville, Tennessee"},
 {"g":"Revenant Records"},
 {"h":"[2015]"}
],
 "ind1":" ",
 "ind2":"1"
 }
Rule:
 "264": [
 {
 "entity": [
 {
 "target": "publication.place",
 "description": "Place of publication",
 "subfield": ["a"],
 "rules": []
 },
 {
 "target": "publication.publisher",
 "description": "Publisher of publication",
 "subfield": ["b"],
 "rules": []
 },
 {
 "target": "publication.dateOfPublication",
 "description": "Date of publication",
 "subfield": ["c"],
 "rules": []
 }
]
 },
 {
 "entity": [
 {
 "target": "publication.place",
 "description": "Place of publication",
 "subfield": ["f"],
 "rules": []
 },
 {
 "target": "publication.publisher",
 "description": "Publisher of publication",
 "subfield": ["g"],
 "rules": []
 },
 {
 "target": "publication.dateOfPublication",
 "description": "Date of publication",
 "subfield": ["h"],
 "rules": []
 }
]
 }
]
An outcome Instance looks like this in Json:
Instance:
{
 "publication":[
 {
 "place":"Chicago, Illinois :",
 "publisher":"The HistoryMakers,",
 "dateOfPublication":"[2016]"
 },
 {
 "place":"Nashville, Tennessee :",
 "publisher":"Revenant Records,",
 "dateOfPublication":"[2015]"
 }
]
}

New object per repeated sub-fields
If there are several repeated sub-fields in one single record, then entity will concatenate them. To create a new object per each sub-field even if they are repeated, we can use entityPerRepeatedSubfield flag:
MARC Record:
 "264": {
 "subfields":[
 {"a":"Chicago, Illinois :"},
 {"a":"Nashville, Tennessee"},
 {"f": "Austin Texas"}
],
 "ind1":" ",
 "ind2":"1"
 }
Rule:
 "264": [
 {
 "entityPerRepeatedSubfield": true,
 "entity": [
 {
 "target": "publication.place",
 "description": "Place of publication",
 "subfield": ["a", "f"],
 "rules": []
 },
 {
 "target": "publication.publisher",
 "description": "Publisher of publication",
 "subfield": ["a", "f"],
 "rules": [
 {
 "conditions": [],
 "value": "STUB publisher"
 }
]
 },
 {
 "target": "publication.dateOfPublication",
 "description": "Date of publication",
 "subfield": ["a", "f"],
 "rules": [
 {
 "conditions": [],
 "value": "STUB date"
 }
]
 }
]
 }
]
An outcome Instance looks like this in Json:
Instance:
{
 "publication":[
 {
 "place":"Chicago, Illinois :",
 "publisher":"STUB publisher,",
 "dateOfPublication":"STUB date"
 },
 {
 "place":"Nashville, Tennessee :",
 "publisher":"STUB publisher",
 "dateOfPublication":"STUB date"
 },
 {
 "place":"Austin Texas",
 "publisher":"STUB publisher",
 "dateOfPublication":"STUB date"
 }
]
}

Required sub-fields
Sometimes there is a need to map target field depending on existence of some sub-field. We use requiredSubfield to define sub-field required to map target field:	Comment by Lisa McColl: Sometimes the existence of a MARC subfield will dictate whether or not a target field is presented in Inventory. We use requiredSubfield to define the required subfield needed to trigger the appearance of a target field. In this example, the presence of an 020 subfield z in a MARC record is needed in order for the target field, “Invalid ISBN” to appear in the Inventory record.

MARC Record:
{
 "020":{
 "subfields":[
 {
 "z":"9780190494889"
 },
 {
 "q":"hardcover ;"
 },
 {
 "c":"alkaline paper"
 }
],
 "ind1":" ",
 "ind2":" "
 }
}
Rule:
"020": [
 {
 "entity": [
 {
 "target": "identifiers.value",
 "description": "Invalid ISBN",
 "subfield": ["z","q","c"],
 "requiredSubfield": ["z"],
 "rules": []
 }
]
 }
]
"z" sub-field is required for mapping "identifiers.value".	Comment by Lisa McColl: If the paragraph above is used, I would take this out.
· If no "z" in record sub-fields, then "identifiers.value" remains empty(null).	Comment by Lisa McColl: If there is no subfield “z” then it is not just empty or null in this case – the field actually does not appear at all.
· If "z" exists among record sub-fields, then "identifiers.value" gets filled by all the ["z","q","c"].
REST API
When the source-record-manager starts up, it performs initialization for default mapping rules for given tenant. There are 3 REST methods to work with rules.
	Method
	URL
	Content type
	Description

	GET
	/mapping-rules
	
	Get rules for given tenant

	PUT
	/mapping-rules
	application/json
	Update rules for given tenant

	PUT
	/mapping-rules/restore
	application/json
	Restore rules to default

To get rules you can send this request using GET method
curl -w '\n' -X GET \
-H "Content-type: application/json" \
-H "x-okapi-tenant: {tenant}" \
-H "x-okapi-token: {token}" \	Comment by Lisa McColl: In order to get the token, it seems like you have to first use POST to log in. Is that correct? Maybe that is obvious to someone who does this a lot, but I needed help from one of our developers to know how to log in then receive the token.
https://folio-snapshot-load-okapi.aws.indexdata.com/mapping-rules

