
 
 

Seite 1 von 11 
 

Request for an offer  

„Software development for the FOLIO Library Service Platform (LSP) - 

Computing and visualization of E-Resource usage statistics“ 

 

We hereby ask for an offer for the development of software for the FOLIO Library Service Platform 

(LSP) for the calculation and visualization of usage statistics for e-resources (see specification below). 

Send the offer until 30 October 2020 to haushalt.einkauf@slub-dresden.de with reference to the ID  

M351-2020. 

Use references to proof your experience in agile software development and with public institutions. 

Use software projects on GitHub to proof your experience in developing open source software. 

Please briefly describe the extent to which the personnel to be appointed has experience with the 

same or a similar software stack. Indicate whether the personnel to be appointed has already 

contributed to software development in the FOLIO LSP project and briefly describe the contributions. 

Please provide an estimate of the workload in working days as well as the daily rate (net) and any 

other costs incurred and indicate whether the deadline can be met. 

Client 
Saxon State and University Library Dresden (SLUB) 
Postal Address: 01054 Dresden 
Visitors' Address: Zellescher Weg 18, 01069 Dresden 
 

Subject 
Software development for the FOLIO Library Service Platform -  
Computing and visualization of E-Resource usage statistics 

 

Background 
SLUB is one of the largest research libraries in Germany. As a classical state library it archives and 

collects comprehensively publications on Saxony and publications published in Saxony. As university 

library of the Technische Universität Dresden it guarantees the information supply to a strong research 

university with an unusually wide range of subjects. Furthermore it fulfills important coordination and 

service functions to the libraries in the Free State of Saxony. 

SLUB operates the Dresdner Digitisation Center (DDZ), a leading center for mass digitization, and is a 

member of the competence network German Digital Library. It participates substantially in the 

development of production and presentation software of digital documents.  

mailto:haushalt.einkauf@slub-dresden.de


 
 

Seite 2 von 11 
 

In the field of resource discovery, SLUB cooperates closely with the Leipzig University Library. Both 

operate a joint article index with more than 150 sources and 160 million records, which are also made 

available to other libraries within the finc user community1. 

SLUB is a public institution of the Free State of Saxony. 

In partnership with the Leipzig University Library, SLUB is conducting a project to supply the Saxon 

university libraries with an Electronic Resource Management System based on the open source FOLIO 

Library Service Platform2 (LSP). This project is funded by the European Regional Development Fund 

(ERDF)3 and ends in December 2020. FOLIO is an international collaboration of libraries, developers 

and vendors building an open source library services platform. It supports traditional resource 

management functionality and can be extended to other institutional areas. Since May 2018 the Leipzig 

University Library has been a member of the Open Library Environment (OLE) community and is 

actively involved in the development of the FOLIO LSP. One of the project results is the development 

of the FOLIO app eUsage for automatic harvesting and storing COUNTER4 usage statistics of electronic 

resources. The majority of functional requirements for Electronic Resource Management are almost in 

place due to the performance of the community. However, there are some business-critical functions 

that should be realized by commissioning a software company. These functionalities are described 

below. 

Goal 
The outcome of this project should enable FOLIO libraries and their staff to evaluate licensed electronic 

resources by means of calculated and visualized statistics. These statistics will base on the COUNTER 

statistics releases 4 and 5 within the FOLIO Library Service Platform. This involves further classes of 

information such as agreements, journal and/or package information as well as payment information 

(cross-app use cases).  

A number of visualized statistics will be available in the existing FOLIO app "Agreements", which can 

be downloaded for further use. The application administrator can configure in a client-specific setting 

which of the available statistics are available to the employees of the library. 

The code / app has to to be open source under the terms of the Apache License, Version 2.0. 

The project goal coincides with the goals of the international FOLIO community. It will benefit from 

this development. 

                                                           
1 https://finc.info/ 

2 https://www.folio.org/ 

3 https://ec.europa.eu/regional_policy/en/funding/erdf/ 

4 https://www.projectcounter.org/ 



 
 

Seite 3 von 11 
 

Specification 

Overview and system context 

The development in this project is part of the FOLIO LSP, which consists of the OKAPI API gateway5 and 

apps, maintained by various development teams and stakeholders from all over the world. It is to be 

assumed that the development will take place in coordination and cooperation with parts of this 

community. The objectives are specified by SLUB; the atomic requirements analyses are coordinated 

and provided by the Leipzig University Library, which also acts as product owner within the FOLIO 

community. 

More information on FOLIO software development, references and guidelines can be found at 

https://dev.folio.org/. It is imperative to follow the FOLIO software development rules and guidelines. 

All software components are to be distributed under the terms of the Apache License, Version 2.0. The 

FOLIO project uses the agile management method SCRUM, which implies bi-weekly sprints, sprint 

review and planning. 

The software stack is composed as follows: Docker, React, REST, PostgreSQL, JSON, Java, Javascript, 

Git. Please consult https://dev.folio.org/ for more detailed information 

The following FOLIO apps are important for the goals set out here: 

Agreements: FOLIO app, used for the administration of agreement information as well as e-resources, 

i.e. journal package and journal information. Package and journal information can be obtained via the 

Global Open Knowledgebase (GOKb) using the app Local KB Admin, or via EBSCO knowledge base, 

using the app eHoldings. The choice can be made at tenant level.  

The app Agreements is compliant to both knowledgebases and stores the information on licensed 

content as agreement lines, linking to the knowledgebase app. 

● folio-org/mod-agreements: Module for handling the server side work needed for the 

Agreements app6 

● folio-org/ui-agreements: Stripes front end module for Agreements app7 

 

eUsage: FOLIO app, used for the record of Sushi access credentials, COUNTER release version and 

report types as well as the storage of COUNTER usage stats according the COUNTER data model of 

releases 4 and 5. 

● folio-org/mod-erm-usage: Store usage statistics and access data to these statistics8 

● folio-org/ui-erm-usage: Stripes UI for managing usage statistics9 

 

                                                           
5 https://github.com/folio-org/okapi/ 
6 https://github.com/folio-org/mod-agreements 
7 https://github.com/folio-org/ui-agreements 
8 https://github.com/folio-org/mod-erm-usage 
9 https://github.com/folio-org/ui-erm-usage 

https://dev.folio.org/
https://dev.folio.org/


 
 

Seite 4 von 11 
 

Orders: FOLIO app, where orders and order lines are managed. 

● folio-org/mod-orders: Orders business logic module10 

● folio-org/mod-orders-storage: Storage (CRUD) module for Orders11 

● folio-org/ui-orders: Stripes UI for managing orders12 

 

Invoices: FOLIO app, where invoices are managed. 

● folio-org/mod-invoice: Invoice business logic module13 

● folio-org/mod-invoice-storage: Persistent storage (CRUD) of invoice data 

● folio-org/ui-invoice: Stripes UI for invoices 

●  

The complete FOLIO source code is available on https://github.com/folio-org/. 

System Context Diagram 

The system context diagram shows involved apps and classes of information.  

The white boxes represent already existing FOLIO apps. The yellow boxes represent 

apps/components/parts that are to be developed in this project. There are two different 

Knowledgebases interoperating with the FOLIO System which both manage package and e-journal 

information: the Global Open Knowledgebase (GOKb) and the EBSCO Knowledgebase. Both are to be 

examined and - if technically feasible - supported with regard of the project goals. 

The statistical calculations, that have to be implemented in this project, use data from the apps 

Agreements, eUsage, Invoices and Orders, as listed above. Results have to be visualized in the 

agreements app and have to be prepared for download for further use (see section Example scenario 

below).  

 

Example scenario “Cumulative journal access per time” 

The scenario “Cumulative journal access per time” is exemplary for a number of scenarios that are to 

be developed. It is intended to be used for illustration. The scenarios mainly differ in the type of 

                                                           
10 https://github.com/folio-org/mod-orders 
11 https://github.com/folio-org/mod-orders-storage 
12 https://github.com/folio-org/ui-orders 
13 https://github.com/folio-org/mod-invoice 

https://github.com/folio-org/


 
 

Seite 5 von 11 
 

statistics, which information sources (app modules) are included, how they are calculated and 

visualized. 

Goal: 

A library employee wants to know how often the journals that are licensed under a particular 

agreement have been used in their library. He uses the FOLIO agreements app for this. He opens the 

agreement and selects the "Cumulative journal access per time" statistics from the available options 

in the "Statistics preview" section. He selects the reporting period. The default period is the date from 

the start to the end of the agreement (or until now if the contract is still running). Then he selects 

"Show statistics" and sees a commented diagram that shows the number of uses (y) per time in months 

(x). He can then select "Download" and receives a table with the numbers on which the diagram is 

based and the diagram itself. 

Scenario steps (screenshots do not represent the current state of the FOLIO software and include some 

mock-ups): 

(1-USER) 

● User selects an agreement in agreements app. 

● User opens the usage data section on the agreement screen and selects the statistics 

“Cumulative journal access per time”. 

 

(2-USER) 

● User enters reporting period start and end month. 

● User clicks on “Show graph”. 

 



 
 

Seite 6 von 11 
 

 

(3-SYSTEM) 

● Parameters: 

○ statistics ID (not yet present) 

○ agreement ID 

○ usage data provider ID 

○ reporting period start month 

○ reporting period end month 

● The Statistics ID defines the code to be executed and thus all further steps. The further steps 

and parameters therefore only apply to the "Cumulative journal access per time" statistics. 

Parameters: 

○ required report version: 4 

○ required report type: JR1 

 

(4-SYSTEM) 

● The program collects additional data from other modules through APIs. 

○ folio-org/mod-erm-usage 



 
 

Seite 7 von 11 
 

■ in: usage data provider ID, report version: 4, report type: JR1, reporting 

period start month, reporting period end month 

■ out: JSON file containing JR1 report for the reporting period 

○ folio-org/mod-agreements 

■ in: agreement ID 

■ out: JSON file containing entitlements list for the agreement (KBART-ish list 

of ISSNs/DOIs and other data for all journals covered by the agreement) 

(5-SYSTEM) 

● The program reports lines from mod-erm-usage according to entitlements list (only those 

journals remain in the report, that are listed in the entitlements and therefore are currently 

subscribed). 

 

(6-SYSTEM) 

 The program sums up the full text access counts of each month for all journals. 

 

(7-SYSTEM) 

● The program makes data-table exportable via API as JSON: 

 

Month Full text access 

2017-09 138 

2017-09 96 

2017-09 112 

2017-09 150 

2017-09 105 

…  

 

(8-SYSTEM) 

● The program generates a graph from the data table and makes it exportable via API as SVG. 



 
 

Seite 8 von 11 
 

  

(9-SYSTEM) 

● The program displays the graph in the agreements user interface. 

 

(10-USER) 

● User clicks on “Download” and gets an xlsx, ods or csv file consisting of both data table and 

visualization as well as metadata on agreement, reporting period etc. 

 



 
 

Seite 9 von 11 
 

 

 

Statistics Cumulative journal access per time 

  

Agreement Annual Reviews 

uuid 1234-5678-9012-3456 

Agreement period 2019-01-01 to 2019-12-31 

Reporting period 2019-01 to 2019-06 

  

Month sum full text PDF 

2017-09 138 

2017-10 96 

2017-11 112 

2017-12 150 

2018-01 105 

…  

 



 
 

Seite 10 von 11 
 

 

Further reporting scenarios to implement 

The exact requirements for the reports to be developed are subject to a discussion in the ERM Sub SIG 

within the agile process of software development. The following report requests are known so far: 

● Cost per download per agreement 

● Price developments over several years per agreement 

● Cumulative access per journal/title and time in an agreement 

● Comparison of the use of the current year vs. archive years 

 

A total of max. 10 reports are to be implemented. 

Settings requirements 

The reports listed in the "Statistics Preview" should be configurable tenant-based in the FOLIO-Setting-

App from the available reports. 

Non-functional requirements 

The software development should take expandability and maintainability into account, since further 

reports will have to be created and integrated in the future and the COUNTER scheme may also change. 

These extensions should also be possible for third parties, e.g. for developers in libraries, without major 

hurdles. 

A documentation of the functionality as well as the source code is expected. All guidelines provided by 

the FOLIO project must be followed. A documentation for the creation of further reports is also part 

of the development contract. 

Milestones 

Milestone Means of verification 

1. Backend module is 
completed in the main 
features 

The backend module is demonstrated by means of a jointly determined 

report scenario and supports the limitation to a reporting period. Source 

code is available on https://github.com/folio-org 

2. Enhanced features 
and number of reports 
increased 

The limitation of report lines according to own entitlements list is 

demonstrated. (Only those journals remain in the report that are listed in 

the entitlements and therefore are currently subscribed).  

Two more jointly determined reports are demonstrated. Basic 

documentation is completed. 

3. Completion of project; 
number of reports 

Remaining reports are demonstrated. Documentation is completed. 



 
 

Seite 11 von 11 
 

increased 

 

Schedule, acceptance and payment 
All deliverables are to be accomplished until March 31, 2021. 

Partial invoices can be issued for completed milestones. For the examination and acceptance of the 

work packages, the contractor provides the SLUB Dresden with the documents and outcomes specified 

in the respective milestone descriptions (see section Milestones) by e-mail. SLUB as well as the Leipzig 

University Library is entitled to convene online meetings with the contractor if required. For this 

purpose, the library will contact the contractor within 2 weeks of submitting the results of a work 

package. The contractor must make an appointment possible that has been announced by the library 

2 weeks in advance. 

General conditions and constraint factors 
All software components to be developed are subject to the terms of the Apache license, version 2.0. 

The source code has to be published at https://github.com/folio-org. The FOLIO project uses the agile 

management method SCRUM with biweekly sprints, sprint reviews and planning. Agile development 

includes agile and iterative requirements analysis. This means that the requirements specified in this 

RFP cannot be considered complete and elaborated. The further gathering of requirements is part of 

the project and is the responsibility of the client. 

Neither SLUB nor Leipzig University Library can offer substantial technical support to achieve the 

project goal. In addition to a project start (kick-off) with detailed explanations and discussions on the 

scope of the project and the project goals, the client supports the contractor with regard to the 

availability of test data, the system configuration at user level and the test scenarios. 

Both libraries cannot provide hardware, software, or software licenses. Travel expenses will not be 

reimbursed. 

https://github.com/folio-org

